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A new relaxation method, block-implicit relaxation (BIR), which is applicable to 
partial difference equations with mesh varying coefficients and irregular boundaries, is 
compared with the less general Wachspress-optimized AD1 method in solving the 
Poisson-Dirichlet problem on a rectangle. BIR consists of dividing a large computa- 
tional mesh into several small meshes, and solving the difference equation exactly in 
each submesh interior. Residuals on the submesh boundaries are reduced by an iterative 
relaxation scheme. BIR is found superior for all but the largest forcing function scales. 
The large-scale convergence is accelerated significantly by a least-squares optimization 
procedure, which requires little additional computation or storage. In application 
to related sequences of problems for which accurate high-order extrapolation is possible, 
the new method has the strong advantage of performing such extrapolation with re- 
latively little auxiliary storage or computation. Thus, the new method is well suited for 
time-implicit time marching models. Application to a time-implicit nonlinear transport 
equation with diffusion (high Reynolds’ number channel flow) is discussed. 

1. INTR~DUO~~N 

In this paper, an efficient and general relaxation method for two-dimensional 
boundary value problems is described. The method can be succinctly described as 
“block-implicit relaxation (BIR)” in the same sense that alternating direction 
implicit (ADI) methods are described as “line-implicit relaxation.” Actually, 
AD1 methods are special cases of BIR, in which the implicit blocks are very 
elongated, spanning the entire mesh with only a few adjacent lines; in the case 
of second-order equations, three adjacent lines are used, with the outer two serving 
as temporarily fixed artifical “boundary conditions” for the interior line. The 
BIR method is most efficient for two-dimensional blocks, since a highly efficient 
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direct method is available for solving general two-dimensional problems. The 
latter method is a two-dimensional generalization of “shooting” methods for 
solving two-point boundary value problems and is termed the “generalized sweepout 
method (GSM)” by Hirota, Tokioka, and Nishiguchi [4]. However, as noted by 
Roache [l l] (who discovered the GSM at about the same time) and by McAvaney 
and Leslie [6], the GSM cannot readily be applied as a direct method in solving 
large (high-resolution) problems, since this requires very high-precision arithmetic. 
Only by dividing such large problems into smaller ones, as accomplished with BIR, 
is the GSM readily applied to large problems. (Edwards and Hansen [3] describe a 
method for solving eigenvalue problems, which is related to the GSM in that a 
similar recursion relation is used. They use “conditioning transformations” 
to control round-off error. Such transformations are useful for homogeneous 
problems. However, for inhomogeneous problems considered in this paper, the 
necessary source term transform requires excessive computation to calculate and 
use. Therefore, it appears to us more advantageous to use the iterative procedure 
described in this paper in solving inhomogeneous problems.) On the other hand, 
BIR’s efficiency is improved by using the GSM, especially in solving two- 
dimensional problems. Thus, BIR and the GSM complement one another, and, as 
supported by the examples and discussion in this paper, make an attractive 
combination. 

The BIR-GSM combination is applicable to solving linear two-dimensional 
boundary value problems involving coupled partial diference equations with mesh 
varying coe#icients and irregular1 boundaries. Perhaps the strongest points of the 
BIR-GSM procedure are its general applicability and BIR’s highly ejicient extra- 
polation capability. Because of these points, and BIR’s especially rapid convergence 
to small-scale solution components, the BIR-GSM procedure appears well suited 
for application to time-implicit formulations of time marching field problems, 
such as the example in Section 4. 

2. THE BIR METHOD 

BIR consists of dividing a large computational mesh into several small meshes, 
and solving the difference equations exactly in each submesh interior. Residuals 
on the submesh boundaries are reduced by an iterative relaxation procedure. 
Additional BIR details are given by Dietrich [2] and by the examples below. 

The GSM is recommended as a general method for solving two-dimensional 

* In problems with irregular boundaries (not coincident with coordinate lines), at least some 
of the BIR blocks must be irregular. As noted by Roache [l 11, such blocks can be solved directly 
with the GSM. 
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BIR submesh problems; it is especially computationally efficient for sequences of 
problems with the same linear operators and class of boundary constraints. For 
such sequences, the BIR preprocessing is performed once and for all and requires 
O($) operations for each nXn submesh used. (If the linear operators and class of 
boundary constraints do not vary from one submesh to the next, the preprocessing 
need be performed on only one submesh.) After preprocessing, the GSM requires 
O(n2) operations for each 12 x n submesh solved, while other direct methods 
require O(n2 In n) operations. Iterative methods, such as AD1 with a tridiagonal 
algorithm, require O(n2) operations per iteration. Thus, the GSM has clear 
advantages over other direct and iterative methods, and is the preferred method 
for many BIR applications. For a description of the GSM, see the Appendix. 

In certain special problems, efficient direct methods are applicable even with 
high resolution. However, the BIR-GSM iterative approach is more general and 
may even be preferable, especially if high-precision results are not required. Even 
when high precision is required, the highly efficient BIR-GSM iteration may be 
preferred over an O(n2 In n) direct method. 

Finally, the most efficient AD1 methods are less general than the BIR-GSM 
method and do not have BIR’s highly efficient extrapolation capability (see below) 
when applied to the total grid. Also, as noted in Section 6, AD1 methods can be 
singular in problems where the GSM is not. 

Returning to the BIR discussion, we assume (except as noted) that the BIR 
submesh boundaries are not altered from one iteration to the next and that the 
maximum submesh size compatable with the available computer precision is 
used (as recommended by Dietrich [2]). In such a case, the submeshes must 
overlap in order to be coupled during the BIR iteration. For second-order 
equations, we suggest a two-line overlap (Fig. 1). Although larger overlaps could 
be used, this would increase the calculation per BIR iteration (due to multiple 
updating of points in overlap regions), and would increase the auxiliary calculation 
and storage required in taking advantage of the following important BIR properties. 

(i) The computation during one sweep depends only on values initially 
assumed on the mesh of block boundary lines (Fig. l), so the exact 
solution can be calculated in one sweep from knowing only its exact values 
at a small subset of the total grid. 

(ii) At the end of any sweep, the residuals are nonzero only on a mesh of 
lines adjacent to the block boundary lines (Fig. l), which is again a small 
subset of the total grid. 

The first feature allows one to extrapolate previous results while using only the 
values along the boundary lines. Thus, in a related sequence of problems, one can 
use high-order extrapolation with little auxiliary storage or computation. Together, 
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FIG. 1. Overlapping block arrangement for solving Poisson equation Vfd = (&+l,, + 
4i,l+l + &., + 4i.r-l - 4&)/Aa = qij , 2 < i < 13, 2 < j < 13 on a 14 x 14 grid, using nine 
6 x 6 blocks. The boundary conditions are applied on the outer lines, A, B, C, and D. Sweeping 
left to right, bottom to top, as indicated by the block numbers (in the center of each block), 
the solution at the end of a given cycle depends only on the 4 values assumed on the euen-numbered 
lines at the beginning of the cycle. At the end of any cycle, the residuals (Vfj4 - qij) vanish 
everywhere except on the odd-numbered lines. 

the two features allow one to combine previous trial solutions (generated by 
relaxation sweeps) in such a way that the mean squared residual is minimized, 
again with very little auxillary storage or computation; this allows one to optimize 
the convergence rate. Thus, both features allow one to optimize starting values and 
convergence rate with little auxillary storage or computation. 

We now describe in detail the solution procedure for solving the discrete Poisson 
equation on the 14 x 14 grid illustrated in Fig. 1, using nine 6 x 6 blocks. 

First, + values are assigned along the even-numbered boundary lines (excluding 
the endpoints, where the true boundary constraints are applied). The accuracy 
at the end of the first sweep depends only on these values, so it is desirable to 
extrapolate them accurately from previous results if available. Next, the 16 interior 
4 values in block 1 (the lower left 6 x 6 block, bounded by lines A, D, 2, and 6) 
are adjusted so that the difference equation is satisfied exactly at these same points. 
The 16 4 values can be determined very efficiently using the GSM. At this point, 

Next, the same procedure is applied to block 2 (bounded by lines A, 1, 4, and 6), 
whose left boundary has four of the newly determined values from the first block. 
Note that, in adjusting the left four interior points (on line 2) of the second block, 
nonzero residuals are created at the right four interior points of the first block (on 
line 1). At this point, 

rii = 0, 2<i<9(i#5), 2<j<5. 
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The sweep is continued to the remaining seven blocks in the sequence indicated 
by the numbering, thereby completing the first grid sweep. At this point, 

rij = 0, 2 d i 9 13 (i # 5,9), 2 <j < 13 (j # 5,9). (2) 

The residuals at the interior points on the four odd-numbered lines (Fig. l), 
corresponding to rsj , rsi , rib, t9 r. are then calculated and stored. There is no need 
to store the remaining residuals, which all vanish according to Eq. (2). If the 
residuals are too large, the 4 values along the even-numbered lines are stored for 
future reference and a second sweep is performed. Again, the residuals are stored 
and, if too large, a third sweep may be started. However, it is desirable to use the 
available information to improve the I$ values on the even-numbered lines before 
performing a third sweep. This is done by determining and using the linear 
combination of the first two sweeps that minimizes the mean squared residual 
along the odd-numbered lines, subject to the constraint that the residuals at all 
other interior points remain zero (see Eqs. (3)-(5) below). The stored 4 values 
from the end of the first sweep are accordingly combined with the present values 
on the even-numbered lines to obtain the “optimum” starting values for the third 
sweep. However, the present 4 values on the even-numbered lines are stored 
before performing the third sweep. When the third sweep is completed, three sets 
of residuals are available from which to optimize, if a fourth sweep is desired. 

The computational details of the least-squares optimization referred to above are 
as follows. Let 

where N is the total number of sweeps completed and the C$ superscripts denote the 
sweep number. By construction, r$ = V$$n - qij vanishes everywhere except 
on the odd-numbered lines in Fig. 1;. it follows that Rij E V$jij - qij will, 
according to Eq. (3), also vanish except on the odd lines for any choice of the c,‘s. 
To determine the ideal c,‘s, we render the mean squared residual associated with Q, 
stationary with respect to each c, . That is, (8/&J & Rfi = 0, n = 1, N - 1, or 

Again, note that we need consider the i, j summation only for points on the 
odd-numbered lines. To rewrite Eq. (4) in terms of the stored residual vectors, we 
replace Vz@’ by r; + qij and carry out the differentiation to get 

N-l 

zl cm f$ [(r$2 + rzr$ - r$$ - r$$] = z [(rc)’ - r$$], n = 1, N - 1. (5) 

581/18/4-6 



426 DIETRICH, MCDONALD AND WARN-VARNAS 

Thus, the optimum c,‘s depend only on the self- and cross-correlations of the 
previously calculated and stored residual vectors. Solving Eqs. (5) for the c,‘.s 
and substituting into Eq. (3) for points on the even-numbered lines thus determines 
the desired optimum starting values for sweep number N + 1. Using such optimum 
4 values accelerates the convergence in general, giving a very significant im- 
provement for the largest scales (more than doubling their convergence rate). 

3. BIR COMPARISON WITH WACHSPRESS-OPTIMIZED AD1 

The Wachspress-optimized AD1 method (Wachspress [ 131) and the least-squares 
optimized BIR method are applied to the following sequence of discrete Poisson- 
Dirichlet problems. 

4:; = sin ( 2si-m 
i-l 

61 
1 ( 

. sin 27-m+) 

and 

r$yy = ~$2~ = cjr: = ~$7:~ = 0 (2 < i < 61,2 <j < 61). 

The Wachspress method is of the Peaceman-Rachford class of AD1 methods 
(Peaceman and Rachford [9]) 

(WI - LJ 4x’ = (%I + LJ) 445 - 4&i 7 

(%a - L) 9Ytj-1 = (wn + L> &Y - qi,i 3 n = 1, 2 ,..., 2p, 

where 2 . 2p line-implicit sweeps are performed, thereby completing 2p 
iterations; w, are the Wachspress-optimized iteration parameters; S,& = 
(di,l,j + L,j - 2A.d A-T and S,,C$ = (c&+~ + I+$+~ - 2&J LI-~. The iter- 
ation parameters are determined by minimizing the maximum possible (over all 
eigenfunctions) error ratio (final error over initial error) that results after com- 
pleting 2p iterations. This error ratio is given by 

where h, is the kth eigenvalue. For problems in which all eigenvalues are real and 
of the same sign, such as the present one, it is always possible to determine iteration 
parameters which give error ratio less than unity for all eigenfunctions. 
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For convenient comparison of the Wachspress and BIR methods, we define a 
normalized mean squared residual, ET 

In Fig. 2, the two methods are compared in detail in solving Eq. (6) after roughly 
equal amounts of computation: about 50 operations per grid point. This corre- 
sponds to four iterations of the four-parameter Wachspress method and four sweeps 
of the BIR method. The plotted number in the (m, n) position of the Fig. 2 diagrams 
is the base ten logarithm of (Emn)-l. Thus, large numbers reflect small residuals. 

m  

PIG. 2. Wavenumber space diagrams revealing Wachspress-optimized AD1 and optimized 
BIR convergence rates for all possible two-dimensional wavenumber source terms, qm”, in solving 
discretized Poisson-Dirichlet problem on a 62 x 62 grid, Vf,4”“’ - (c$~~~,, + @:x1 + $y’l f + 
4&- 44T;)A-’ = 4;;” = sin(2lrm((i - 1)/61)) . sin(2rrn((j - 1)/61)). Defining the normahzed 
mean squared residual residual, E”“, as Em” = 22, c;:, (V$P” - 4FY . rc2, c;:B(q~)Sl-l, 
the integer plotted in the (m, n) diagram position is the negative of the base ten logarithm of Em”, 
rounded C# to the nearest integer, evaluated after four relaxation sweeps. Both methods require 
about 50 operations per grid point total to complete four sweeps. All wavenumber (m, n) problems 
are initialized with ((4;;” = , 0 i = 1, 62), j = 1, 62), corresponding to Effln = 1 initially. Thus, 
large integers reflect rapid convergence rates. 

The diagrams show that, with the nearly equal amounts of computation used, 
the BIR method has smaller error than the Wachspress-optimized ADI methodfor all 
but the largest scales. Not surprisingly, BIR is superior for scales smaller than the 
block size used (m > 4, n > 4). (In these results 16 17 x 17 blocks were used. 
Of course as noted by Dietrich [2], convergence is maximized by using the largest 
block size compatible with the available computer precision.) 

Figure 2 contains the basic information regarding BIR performance, although 
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detailed phase information is not revealed. Only the phase relative to the internal 
block boundaries is important; the exact solution results after one sweep if the 
block boundaries are all nodes of the solution. Thus, BTR effectively becomes a 
direct method for such an idealized case. (The Wachspress method can also be made 
direct for an idealized case when the source term is exactly one of the eigen- 
functions; this is done by using the iteration parameter appropriate for that 
eigenfunction. However, in contrast to the idealized BIR case, using such an 
iteration parameter would cause large errors in other source term components that 
may be present in a real problem.) Since the phase (relative to the block boundaries) 
varies nearly randomly in the two-dimensional wavenumber space of the results 
displayed in Fig. 2, the BIR results are approximately representative. Some wave- 
numbers would converge faster if the phase were changed arbitrarily, and some 
would converge more slowly. (This has been verified by creating the same type of 
diagram for cosine functions in Eq. (6).) 

Caution should be taken to properly interpret the word “scale” in the above 
discussions. “Scale” refers strictly to the eigenfunction wavelength. If the source 
term were like a narrow Gaussian function, the half-width corresponds to the 
dominant scale only for the first few BIR sweeps, during which the rapid small-scale 
convergence indicated in Fig. 2 occurs. After the first few BIR sweeps, the error is 
very small; however, it is concentrated in the long wavelength eigenfunction 
components of the source term. Thus, after thejirst few BIR sweeps, the convergence 
rate for the narrow Gaussian source term is reduced by the slower convergence of its 
long wavelength components, as revealed in Fig. 2, although the error is already very 
small. 

Although the Wachspress method is competitive with BIR in some respects for 
the present problem, the BIR method is more versatile and, being more constrained 
by numerical precision, would gain relative to the Wachspress method when 
higher-precision arithmetic is used (along with fewer blocks). Obviously, BIR is 
superior when sufficiently high-precision arithmetic is used, with one (or very few) 
block submesh( 

The slower convergence of large scales with the BIR method should not be a 
serious drawback in solving the partial difference equations arising from time- 
implicit models in which small scales vary most rapidly in time. Large scales, 
being of primary interest in most problems, are usually well resolved in time and 
are stable in time even for explicit time schemes. Further, as they are well resolved 
in time, they can be extrapolated to high order and accuracy. Thus, the slower BIR 
convergence for large scales can be compensated, at least partially, by its highly 
eficient extrapolation capability in time marching problems. (Small scales, on the 
other hand, may change greatly during a model time step and cannot be well 
extrapolated. In fact, when the model CFL condition is violated, small scales lose 
time continuity, so it may be desirable to filter high frequencies before performing 
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any high-order extrapolation. As is well known, the small scales usually are 
numerically unstable in time under such conditions, unless they are converged in 
a time-implicit model.) 

Finally, another possible refinement of BIR is to alter the block boundaries 
after each sweep. This has been found beneficial in solving the Poisson equation 
with doubly periodic boundary conditions but has not been combined with or 
compared with the least-squares optimization described above. It also appears 
possible that using higher-order difference approximations near interior boundary 
lines may accelerate the convergence rate. 

4. AN EXAMPLE: BIR APPLICATION TO A TIME-IMPLICIT MODEL OF 
HIGH REYNOLDS' NUMBER FLOW IN A CHANNEL 

The BIR procedure, using the GSM, has been applied to forced two-dimensional 
incompressible high Reynolds’ number flow in a channel. Using a fully time- 
implicit formulation of the barotropic vorticity equation governing the flow-in 
which the nonlinear terms are resolved into a linearized part plus a nonlinear 
part-the resulting time marching problem is numerically stable, even when the 
advective CFL condition is exceeded by a large factor. 

Before describing the fully implicit procedure, we momentarily consider the 
conditions for which time-implicit formulation, which allows one to exceed CFL 
conditions, is advantageous. 

In simulating time-dependent field phenomena which are “quasisteady” in the 
sense that local time tendencies are calculated from sums whose individual terms 
are large compared to their sum, the effect of any small relative error in representing 
a given term can be greatly magnified to produce severe tendency errors. Thus, 
to get a reliable forecast (from the tendencies), one must approximate each 
contributing term with high accuracy. Physical processes must be accurately 
represented in the model equations and any space finite difference derivative 
approximations which are used must be very accurate. Such accurate derivative 
approximations may be determined by the following methods. 

(i) Using fine space resolution, with grid interval much smaller than the 
“quasisteady” space scales of interest; 

(ii) Using high-order difference approximation; 
(iii) Using the pseudospectral method (Merilees [7]). 

The latter two methods can accomplish a given accuracy while using lower space 
resolution than required using the first method. However, they require more 
computation per time step per retained grid point. 
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The first method (fine space resolution) usually requires more storage, and more 
seriously, requires time resolution of high-frequency small-scale modes resolved 
by the grid unless a time-implicit formulation is used. If such modes are of small 
amplitude and the fine space resolution is desired only to obtain accurate, relatively 
large-scale derivatives, it is then desirable to use an implicit approach. In any event, 
certain small-scale modes may have exceptionally short time scales, and resolving 
their time dependence may be of little value to the problem at hand. (For example, 
in atmospheric forecast models, small-scale gravity waves propagating relative to 
a fast current have exceptionally high frequencies, and resolving their time depen- 
dence is of little value-except, perhaps, their more slowly varying large-scale 
transport properties which, hopefully, can be adequately parameterized. It should 
also be noted that certain fine structures such as fronts have much longer time 
scales, so exceeding the model CFL condition does not necessarily ruin their 
numerical forecasts.) Thus, the desirability of implicit time marching is well 
established. For further details, see Kwizak and Robert [.5] and O’Brien and 
Hurlburt [S]. 

Implicit time marching usually requires at least approximate solution of partial 
differential equations each time step. These equations can be very complicated 
and generally have space varying coefficients. To put the fine space resolution 
method in better comparison with the other two, better methods for solving 
such equations are needed. In the present example, a general method for solving 
such equations is described and applied to a simple problem. 

The procedure is as follows, starting with the barotropic vorticity equation and 
using a stream function $ for the nondivergent velocity. 

where 

.a .a V=lax+JYJj; v2 = v ’ v; 5 = vy; V = ui + vj; 

a* . 
u=-ay’ 

a* v=ax; 
and v is a specified diffusion coefficient. The boundary conditions are 

4x, &D/2, t> = v(x, &D/2, t) = 7&G/2, y, t) = 0, 

&tW, Y, t> = WY” - (D/2)3(1 - EY), 
(9) 

where U is a specified flow rate and E eliminates the possibility of the trivial 
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steady state ZJ = U( y2 - (O/2)2) for which all terms vanish. If E is large, the 
possibility of strong barotropic energy exchange between the x-averaged flow 
and disturbance exists. The initial conditions are 

This problem is used only to illustrate BIR-GSM application to time-implicit 
models and is chosen for its simplicity. Equation (8) is approximated by the 
time-implicit difference equation 

c”+“” - <” = At(-v . CV + vV2& (11) 

where 5 = &(c” + &‘“f”“) and v = &(Vt + VtfAt). Equation (11) is within O(At)2 
of the Crank-Nicolson (or trapezoidal) approximation, so it also has error O(At)2. 
In the absence of space truncation error, this time-implicit formulation conserves 
enstrophy (squared vorticity) exactly when v = 0 and V . V = 0 (Roberts [12]). 
The latter relation is satisfied by the use of the stream function; if it were not, 
exact enstrophy conservation could be retained by replacing V . cv by 
+[ V . {v + fl . V)c] in Eq. (11) (Piacsek and Williams [lo]). 

Letting 

w, Y, t> = w, Y, to) + wx, Y, 0 = VI3 + V’s 

5(x, Y, t> = 5(x, Y, to> + 5’(x, Y, t> = 5, + 5’, 
(12) 

Eq. (11) may be rewritten as 

KY - 9070 3 v’, 50 9 i31t+At = [5’ + YWo, v’, 1;,, 7 5’)Y + Q, + Q’, (13) 

where Q, = At[-v . (V&J + vV2&,]; Q’ = dt[-V * (0’%1)]; and 

WV,, v’, 1,) 5’) = (WU-- - Wd + v’L,> + vv25’l. 

Finally, centered second-order space differencing is used. Although the resulting 
space differenced nonlinear transport terms do not converse enstrophy exactly, the 
finite difference analog of replacing V * [v by &[V * CV + (v * V)%] would lead 
to exact (algebraic) enstrophy conservation by these terms in the space and time 
differenced equation. Analogous quadratic conservation is possible with time- 
implicit primitive equation models (Dietrich [I 51). 

For some time after t = t, , Eq. (13) is dominated by the linear terms and Q, , 
with perturbation product terms, Q’, being relatively small. The coefficients of the 
linear terms vary in space but not in time (except when relinearization is performed). 

The solution procedure is as follows. To initiate each time step, the square- 
bracketed term on the right-hand side of Eq. (13) is calculated using previous time 



432 DIETRICH, MCDONALD AND WARN-VARNAS 

step results. Then, Q’ is guessed or extrapolated from previous time step results. 
Then, the resulting linearized partial difference equation is solved for a first 
approximation of the future stream function, using BIR and the GSM. (The term 
Q, is calculated and stored only when it is adjusted during relinearization.) It is 
then preferable to obtain a better approximation for the initially guessed Q’ term 
by substituting the first-approximation stream function. The process is iterated 
until sulhcient convergence is attained. If the iterations start to diverge, or converge 
too slowly, this indicates that the Q’ terms have grown too large for the time step 
being used. This is a signal to redefine the basic state variables (V, , &) to be the 
present flow, appropriately adjust the right-hand side of Eq. (13), and restart the 
predictor-corrector sequence. Very rapid convergence results. Finally, the next 
time step is initiated. 

Although Eq. (13) may be viewed as a fourth-order equation for the stream 
function, the recursion relation for the GSM can be broken into two second-order 
ones, involving the vorticity and stream function. This requires storage of two 
rows of 5 and greatly simplifies the recursion. Both computational savings and 
program simplification result if the fields ZJ and o are also stored. 

5. DIRECTIONAL REYNOLDS' NUMBER AND RESOLUTION 

When E = 0, steady parabolic parallel flow is possible which is stable unless 
UD/v is very large. Thus, for small E, one would also expect nearly parallel flow 
to be maintained. It follows that the v-component flow, normal to the boundaries 
y = &D/2, also should remain small compared to U. In such a case, the y- 
directional Reynolds’ number, Re, = vD/v, is relatively small everywhere, even 
though the channel Reynolds’ number, Re = UD/v, may be very large. This is 
desirable in GSM application to linearized transport equations, since the GSM 
recursion relation can be singular or nearly singular unless the local grid interval 
Reynolds’ number for flow in the recursion direction is less than unity everywhere 
(see Appendix). In the present problem, such singularity is easily avoided by using 
the “slow flow” direction (the y-direction) as the GSM recursion direction and 
using sufficient y-resolution to guarantee satisfaction of the grid interval Reynolds’ 
number criterion, vfly/v < 1. (Alternatively, one could avoid this criterion by not 
solving the y-direction advection term implicitly.) 

6. CHANNEL PROBLEM RESULTS 

To illustrate the numerical behavior of the procedure described in Section 4, 
results are discussed for three cases in which only the time step is varied. In cases 1, 
2, and 3 the common parameters are: U = 1, v = 0.01, L = 12, D = 2, and 
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E = 0.1. The grid is 80 x 15 points and six (15 x 15) blocks are used. The 
boundaries lie between the outer two lines of grid points. The varied parameter, dt, 
is, respectively, 2, 1, and 0.5. The channel Reynolds’ number, UD/v, is 200. In the 
first case, the horizontal advection CFL condition is exceeded by a factor of 
thirteen. The deviation from initial conditions is nearly the same function of time 
for all three cases; the agreement is within two percent at all discrete times of the 
first case, and agreement improves with time, as all three cases approach the same 
steady state. The misrepresented small scales do not spoil the long-term integration. 

These results indicate that the time resolution is adequate for the dominant 
large-scale flow in all three cases. With increasing time step, the number of GSM 
sweeps required for the first perturbation product iteration increases somewhat. 
However, fewer than twice as many sweeps are needed for case 1 as for case 3 and, 
after the first iteration, one BIR sweep is adequate in all three cases. The same 
BIR convergence criterion (1% average change on the interior block boundaries) 
is used in all three cases. This is very good behavior in spite of the unrefined 
procedure used: the block boundaries are fixed in space, least-squares optimization 
is not used, and the GSM sweeps are started with the most recently calculated 
values on the block boundaries rather than using higher-order extrapolation. 
Finally, the perturbation product iteration averages about two corrections per 
time step for all three cases, while using the same convergence criterion of 1 % 
average change and using linear extrapolation to start the iteration. 

The applicability of the BIR-GSM to time-implicit atmospheric-type models 
has been further investigated by testing the convergence rate of a modified version 
of the time-implicit equation in Section 4. The basic differences are: the “side” 
boundary conditions have been replaced by periodic conditions; the horizontal 
eddy diffusion term is omitted; and the blocks are “staggered” in the periodic 
direction from one BIR sweep to the next. The results are very encouraging. All 
wavenumbers converge rapidly if the time step (only one step is performed) is not 
longer than the advective CFL based on the horizontal block dimension. For 
example, when the particle displacement is roughly half the block dimension in 
one time step, the normalized mean squared residuals decrease by a factor of 
roughly 300 per BIR sweep. For roughly one fourth block displacement, the factor 
is roughly 15,000. 

Such a time-implicit problem with infinite Reynolds’ number in one or more 
directions would not be well-suited for solution by AD1 methods; when the 
linearized advection CFL condition is violated and the flow is not unidirectional 
in the infinite Reynolds’ number direction, the associated linearized AD1 matrix 
equation for that direction can be singular or nearly singular. To avoid such an 
undesirable situation when violating the CFL condition, one must either introduce 
dissipation to satisfy the directional grid interval Reynolds’ number criterion, or 
transform the problem in a way that results in large time truncation error, unless 
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accurate high-order extrapolation of previous results is performed or the trans- 
formed AD1 matrix equation is iterated. The latter requires extra computation 
and/or storage and may still be numerically unstable; the former may be undesirable 
for physical reasons. In an atmospheric model, satisfaction of the horizontal grid 
interval Reynolds’ number criterion requires the use of unphysically large 
horizontal eddy viscosity and/or extremely high space resolution. If a horizontal 
grid interval of 300 km were used, the appropriate eddy viscosity for wind speeds 
of 30 mjsec would be at least loll cm2/sec. (This would rapidly dissipate small-scale 
features, such as fronts, which might develop using more realistic eddy viscosity 
values. Further, rapid large-scale dissipation would occur due to horizontal eddy 
transfer parameterization, while most synoptic scale dissipation is probably due 
to vertical transfers in the surface boundary layer.) More realistically, horizontal 
eddy transfer should be based on the resolved horizontal wind gradients rather than 
magnitude; it should not attain large vales for broad but fast currents. 

7. FURTHER REMARKS ON BIR AND ATMOSPHERIC MODELS 

Perhaps one of BIR’s most promising applications is to long-term global 
atmospheric circulation and climate models. In such models, it is desirable to 
greatly exceed the CFL condition, especially near the pole regions. Near spherical 
coordinate poles, the longitudinal resolution must be high-and, most naturally, 
is (due to the convergence of the meridions in polar regions) -in order to accurately 
simulate the polar regions (where the advection and curvature terms are amplified, 
due to the coordinate curvature, relative to local time tendencies). A “primitive 
equation” model can be devised which conserves energy and mass exactly (in the 
absence of physical sources or sinks). The highly desirable energy conservation 
property guarantees computational stability, even when exceeding the model CFL 
condition. Energy conservation requires using a fully implicit model whose 
coupled, nonlinear equations are probably most readily solved using a BIR-GSM 
procedure analogous to the one described in Section 4. In a three-dimensional 
model, one would probably apply the BIR-GSM combination to an “alternating 
direction plane-implicit” formulation, using only the x-z and y-z planes, and 
marching only vertically (in the z direction) with the GSM. This would retain the 
efficient time extrapolation capability of BIR and allow use of realistic horizontal 
and vertical eddy transfer coefficients, while exceeding the model CFL conditions. 
Such an implicit approach would put the use of low-order, relatively high-resolution 
grid models in better comparison with high-order and pseudospectral models. 

However, due to their versatility, spectral or Gale&in methods may still be 
superior for simulating phenomena characterized by widely separated bands in 
wave number space which actively influence one another by direct nonlinear 
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interaction (as opposed to the nonlinear cascade mechanism). Powerful east coast 
winter storms, in which there is apparently strong direct interaction between the 
synoptic scale and the convective cloud scale, resulting from cold continental 
synoptic scale air masses rushing over warm water, might well be such a phenom- 
enon. The basic physics of such band phenomena can be described in the framework 
of linearized instability theory. 

Such phenomena would be well suited for simuation with a “spectral gap” 
model (Warn [14]) in which relatively inactive intermediate scales between the 
bands are ignored. Strong “interband” interaction would be most likely when the 
group velocity of a relatively small-scale band can approximate the phase velocity 
of another band. In such a case, the large scale could “modulate” the smaller scale 
while the nonlinear transport by the smaller scale could have a significant larger- 
scale effect. To eliminate numerically troublesome high frequencies usually 
associated with the smaller-scale phase speed, which are physically irrelevant to 
the larger scale, one could subtract out the mean frequency of the two smaller- 
scale components of each interacting triad. (For example, if u = cos{kx + w,t} and 
v = cos([k + dk]x + [wk + dk(h/dk)]t}, 1 dk 1 < I k I, the long wave com- 
ponent of u * v is given by 

(UV 1 cosplkx]} + (UV ) sin[Akx]} = & cos(dkx + dk(h/dk)t). 

The same long wavelength result is obtained after replacing u by zi = 
cos{kx - -&lwt} and v by 8 = cos{[k + dk]x + +dwt}. Thus, one still obtains 
the correct nonlinear effect on the long wave component after greatly reducing the 
short wavelength frequencies, assuming I do I < I w  I. Also, if the long wavelength 
component has phase speed close to --dw/dk, strong sustained interaction with 
the two short wave components can occur; if the product of the short wave 
components has a frequency close to the natural frequency of the long wave 
component, near-resonance results.) Finally, more detailed smaller-scale structure 
could easily be described by including harmonics of the smaller-scale band in the 
spectral model. Further details on the versatility of spectral and Galerkin models 
are discussed by Dietrich [I]. 

8. CONCLUSION 

The optimized BIR method, combined with the GSM, appears well suited for 
two-dimensional boundary value problems, including higher-dimensional problems 
which have been reduced to sequential two-dimensional problems. Modes of scale 
smaller than the two-dimensional blocks used with BIR converge very rapidly, 
which is desirable in time marching problems for which small space scales also have 



436 DIETRICH, MCDONALD AND WARN-VARNAS 

small time scales. Results from application to an implicit time formulation of the 
barotropic vorticity equation suggest that useful application to implicit atmospheric 
models is possible. 

Finally, some relevant features of BIR and the GSM are as follows. 

1. When combined with least-squares optimization (which requires little 
auxiliary calculation or storage, due to properties unique to BIR), convergence 
rate is superior to Wachspress-optimized AD1 methods in solving the Poisson- 
Dirichlet test problem for all but the largest-scale forcing functions. 

2. High-order extrapolation for starting relaxation sweeps requires little 
auxiliary storage or calculation. In problems for which accurate large-scale 
extrapolation of previous results is possible, this at least partially compensates 
for the slower BIR convergence rate to large-scale forcing function components. 

3. When combined with the GSM, a single BIR sweep requires about the 
same amount of computation as an AD1 sweep (using the tridiagonal algorithm) 
while, at most, doubling the storage; the BIR-GSM combination can be applied 
to a large class of problems, including linear coupled partial difference equations 
with variable coefficients (no dependent variable elimination is needed). 

4. Although both BIR and the GSM generalize to an arbitrary number of 
dimensions, the GSM is highly efficient only for one- and two-dimensional 
problems. 

5. The BIR-GSM combination appears especially well suited for problems 
with complicated geometry (at present, the most efficient AD1 methods are 
restricted to simple geometries). 

6. The GSM, besides being more general, can be competitive with other 
fast direct methods, even accounting for the higher-precision arithmetic required 
for large problems. 

APPENDIX: THE GENERALIZED SWEEP-OUT METHOD (GSM) 

The GSM generates the solution of finite difference boundary value problems by 
calculating and superposing two associated solution components: a particular 
solution which satisfies some of the boundary conditions and a homogeneous 
solution which cancels boundary condition errors usually occurring in the particular 
solution. Although, as noted by Roache [Ill and McAvaney and Leslie [6], the 
GSM is basically unstable (i.e., highly sensitive to round-off error when applied 
directly to large problems), its high computational efficiency in application to 
small- or moderate-resolution problems makes its use with BIR both natural and, 
as supported by the examples and discussion in the text, of practical value. 
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As a direct method, the GSM is most efficient for solving two-dimensional 
problems. In particular, it applies to equations of the type 

Vz+ + &, Y) * V+ + Btx, Y)+ = Sk Y), (A4 

with any linear, properly posed boundary constraints specified on a closed 
boundary. GSM application is limited by numerical stability rather than by the 
functional forms of the specified coefficients A(x, v) and B(x, y) in Eq. (A.l). 
In contrast, other efficient direct methods, such as those involving odd-even 
reduction or Fourier transforms, rely on A and B being of special form, such as 
being constant or having very few Fourier coefficients. 

Equation (A.1) may be approximated as 

4i.i+l[~Y-2 + AYi,lWY)l + 4c.i-l[~Y-2 - -4Yi~/(~4)1 
+ #~ii[--2@x-~ + AY-~) + &I 
+ +i+l.i[h-2 + ~&/(2Wl + qLl,dh-2 - A&/(241 

= Sij ; 2,<i<z---1, 2<j<.Z-1, 

where, for convenience, we have assumed a rectangular Z by .Z grid; AX and A Y 
are the X- and y-components of A; dx and dy are the x- and y-grid intervals 
(assumed constant); and & = &i dx, j dy). Equation (A.2) may be expressed 
as a recursion relation 

di.j+l = ldYm2 + AYi~i/(2~Y)l-~{Sij - #i,j-l[dYe2 - AYij/(2dy)l 
- ~&[--2(dx-~ + AY-~) + Bii] - &+&x-~ + AX,,/(2dx)] 

- cj-&ix-2 - AX,,/(2dx)]). tA.3) 

If we know $-values for the rowj = 2, we can find all other +-values by recursively 
imposing Eq. (A.3) and the specified boundary constraints (which determine 
$-values on row j = 1 and columns i = 1 and i = Z). Thus, the original problem 
with (Z - 2) x (J - 2) unknowns has efictively been reduced tofinding the Z - 2 
unknowns2 di.2, 2 < i < Z - 1. The GSM’s high computational eficiency is 
achieved by solving directly for these few unknowns and applying the recursion 
relation (A.3) to determine the remaining unknowns. 

In the GSM procedure, Eq. (A.3) and the boundary constraints are applied 
recursively (marching “upward” as Eq. (A.3) is applied from row j = 2 to row 
j = J - l), after assuming trial second-row values #2 ,2 < i < Z - 1. The result 
is a particular solution, c$~, which, due to (usually) erroneous trial values 4t2, 
will not satisfy the “top” boundary constraints. However, the total solution may 

a For doubly periodic boundary conditions, there are 2Z- 4 unknowns to be determined. 
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be expressed as 4 = @’ + #J”. The homogeneous solution #I* satisfies Eq. (A.3) 
with a null source term (& = 0) and counteracts the error of c$” in satisfying the 
“top” boundary constraint (e.g., if &, = 0, 2 < i < Z, is the top boundary 
constraint, then c$Z = - 4z). while satisfying the homogeneous counterpart of the 
specified boundary constraints on $J everywhere else. Again, the second-row values 
(of 4”) determine whether the top conditions are satisfied after marching upward. 
The top conditions depend linearly on the second-row values chosen to start the 
homogeneous recursion, Eq. (A.3) with Sij = 0. This linear relation may be 
determined once- and for all if A, B are fixed; it is independent of the source 
term Sij , depending only on the difference operator and class of boundary 
conditions. It may be determined by performing Z - 2 sweeps with the homo- 
geneous recursion relation, with the nth sweep being started by c#~,~+~ = 1 and 
& = 0,j # y1 + 1. Th e resulting matrix of Z - 2 top-row vectors is then inverted; 
once this inverse is determined, sequential problems on an N x N grid may be 
solved with O(N2) operations each; no method can be substantially faster than this. 

Unfortunately, the size of problems to which direct GSM application is possible 
is limited by the available computing precision, and the iterative BIR method 
described in the text must be used in GSM application to high-resolution problems. 
(Using double precision IBM arithmetic, the Poisson-Dirichlet problem may be 
solved directly for N as large as 25, if one performs extra iterations to relax 
round-off error effects; if previous results are available, these iterations may be 
reduced by accurate extrapolation of second-row values $$ .) The reason for this 
restriction is best illustrated by considering the discrete Poisson equation on a grid 
with equal spacing in both directions. 

V2& = $i,l,j + $i.j+1 + +i-1,i + #%,3-l - 49&j = qij * (A.4) 

As the recursion analogous to Eq. (A.3) is carried forward, round-off error intro- 
duces a spurious solution 4, which is the fastest-growing solution to V2~ = 0 
resolved by the discrete grid. The continuous analog is 6 cc sin kx * ekY. The 
discrete C$ changes sign from grid point to grid point in the x-direction and increases 
by a constant factor ~11 from row to row in the y-direction. An equation for 01 may 
be derived from Eq. (A.4): 

a2 + 601+ 1 = 0. 

Thus, 01 = 3 f W2 with the two roots describing one growing and one decaying 
solution. The growing solution 6 increases by a factor of 5.83 from row to row, 
so that an initial round-off error of lo-l6 grows to 5 x 1O-s after 14 applications 
of the recursion relation. 

Although the GSM generalizes to problems with more than two dimensions, it is 
most efficient when applied to one- and two-dimensional problems. For an 
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M-dimensional problem with N grid intervals in each direction, the GSM requires 
0(N2M-2) operations to generate starting values for the homogeneous solution 
step. 

Finally, if AY = 2/dy, the recursion relation (A.3) is singular. This type of 
singularity can be avoided in several ways. One is to increase resolution, so that 
1 A Y 1 < 2/Oy everywhere. Another is to change the direction of GSM sweeps: 
if AY is sufficiently smooth, reverse the direction of the sweeps; or, sweep in the 
x-direction if 1 AX 1 < ~/AX everywhere. This type of singularity is referred to in 
Section 5 of the text. 
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